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Abstract

This paper provides a description of damped vibration analysis of automotive double walls with a porous material. The

double walls are modeled by using finite element calculations and by considering the damping couplings among various

materials. Damped sound fields inside of the porous materials are defined by complex effective density and complex bulk

modulus. Particle displacements of the internal air in the porous materials are chosen as unknowns. Displacements in the

solid materials for the walls are also formulated using finite elements including complex modulus of elasticity. Thus,

displacement vectors are common unknown variables for the coupled equations of motion of the damped structures.

By applying asymptotic method to complex eigenvalue problem to obtain modal parameters, expressions of modal loss

factor are derived approximately for the three-dimensional structures in coupling between elastic components, viscoelastic

components, porous components and environmental gas. This approach helps us to obtain fast computation. The

proposed approach and our developed code are verified. Damped vibration of the double walls with a porous layer is

computed in consideration of coupling in damping between layers. We discuss modal damping between the layers.

Crown Copyright r 2009 Published by Elsevier Ltd. All rights reserved.
1. Introduction

To reduce interior noise in automobiles, panels in car bodies are treated with vibration damping materials
and porous materials. Viscoelastic damping materials are laminated on the body panels to decrease resonant
peaks of the panels. Porous materials and interior parts are laminated on the damped body panels to reduce
acoustic radiation from the panels. Therefore, the laminated structures correspond to double walls with a
porous material.

Recently, finite element models having large degrees of freedom are created for initial digital design of cars
before constructing test cars actually. Vibro-acoustic analysis plays one of the important roles of CAE
(i.e., computer aided engineering) for cars.
ee front matter Crown Copyright r 2009 Published by Elsevier Ltd. All rights reserved.
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In high frequency regions of the interior noise, room acoustics [1,2] and SEA (i.e., statistical energy analysis)
[3] under diffused sound fields are suitable for the CAE because there are so many resonant peaks in the cabin
and the bodies. In the lower frequency regions, FEM (i.e., finite element method) is suitable for the CAE
because number of resonant frequencies is small relatively. In the middle frequency regions, much longer
computational time requires for FEM because there exists more resonant frequencies than those in the lower
frequencies, but there exists not enough number of modes to assume uniform distribution of vibration and
sound pressure for SEA etc. Thus, a faster computational method is necessary for the middle frequency
regions.

For elastic structures with viscoelastic damping materials, complex modulus of elasticity is generally
considered for finite elements analysis of viscoelastic materials. To solve such problems rapidly, the modal
strain energy (MSE) method was proposed by Johnson [4,5]. In this method, approximate values of modal loss
factors are calculated by means of real eigenvalue analysis using the strain energy of elements and material loss
factors of viscoelastic elements. This method can be employed for large-scale finite element models such as
automotive bodies [6,7]. We propose an extended version of MSE for obtaining approximated modal loss
factors for three-dimensional structures, including porous materials and solid materials. We call this method
as modal strain and kinetic energy (MSKE) method. In this method, approximate values of modal loss factors
are calculated by means of real eigenvalue analysis using the strain energy and kinetic energy of elements and
material loss factors of porous elements. In our previous paper [27], we proposed this method for two-
dimensional vibro-acoustic problem. In this report, we extend this method to three-dimensional vibro-acoustic
problem. And we apply this method to automotive double walls with a porous material.

2. Numerical methods

We will demonstrate a numerical method for structures, including elastic materials, viscoelastic materials,
porous materials, and gas as shown in Fig. 1. In Section 2.1, discretized equations of motion and finite
elements for three-dimensional damped internal sound fields in porous materials are provided. In Section 2.2,
a finite elements model for the analysis of viscoelastic materials using complex elasticity is provided. Equations
expressed in the global coordinate for the coupled structures are explained in Section 2.3. In Section 2.4, the
modal strain and kinetic energy method is shown as a fast computation approach to obtain modal loss factors
of the coupled damped structures for the three-dimensional damped structures.

2.1. Three-dimensional discrete equations for internal air in porous materials

Discrete equations using finite elements are derived for three-dimensional damped sound field of internal air
in porous materials.

Under periodic oscillation and infinitesimal amplitude, the equations of motion of inviscid compressive
perfect fluid can be expressed as follows [8–10]:

@s=@x ¼ �ro2ufx; @s=@y ¼ �ro2ufy; @s=@z ¼ �ro2ufz. (1)
Fig. 1. A damped structure including solid materials, porous materials and gas.
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The continuity equation is expressed as follows:

s ¼ Eð@ufx=@xþ @ufy=@yþ @ufz=@zÞ. (2)

ufx, ufy, and ufz denote the particle displacements along x, y and z directions, respectively. r and E denote the
effective density and modulus of volume elasticity of the internal air, respectively. o denotes the angular
frequency. In these equations, s denotes the force per unit area. The sign of the force s is positive under
expansion. Thus, the relationship between s and pressure p can be expressed as s ¼ �p.

Normally, the governing equation for pressure p is utilized by deleting the particle displacements ufx, ufy,
and ufz in Eqs. (1) and (2). In this paper, the particle displacements are selected as unknowns [10] by deleting
the pressure p in Eqs. (1) and (2). In this formulation, the displacement is selected as the common unknown
variable for the structures including elastic/viscoelastic materials, porous materials and gas. This helps us to
simplify the superposition of the coupled elements.

The particle displacement vector is set as uf ¼ fufx; ufy; ufzg
T in the region of an element. The relationship

between uf and particle displacement vectors ufe at nodal points in the element is approximated as

uf ¼ NT
f ufe, (3)

where NT
f denotes a matrix composed of appropriate shape functions.

The irrotational conditions are as follows:

@ufx=@y� @ufy=@x ¼ 0; @ufy=@z� @ufz=@y ¼ 0; @ufz=@x� @ufx=@z ¼ 0. (4)

From Eqs. (1)–(4), the kinetic energy ~Tf , strain energy ~Uf , and external work ~Vf are obtained. By applying
the minimum energy principle dð ~Uf � ~Tf � ~Vf Þ ¼ 0, the following expressions can be derived:

ðKfe � o2MfeÞufe ¼ ffe, (5)

Kfe ¼ Eekfe; Mfe ¼ remfe, (6)

where re and Ee denote the effective density and volume elasticity for media in the region of the elements,
respectively. Kfe andMfe denote the element stiffness matrix and the element mass matrix, respectively. mfe and
kfe are the matrix consisting of the shape functions and their derivatives. ffe denotes the nodal force vector.
These equations are applicable to gases in acoustical problems without energy dissipation.

Several bulk reacted models have been researched for acoustic fields in porous materials [11–22]. Some
models employ the complex effective density r�e and complex propagation speed c�e [14,15]. These parameters
for the model can be obtained by using the improved cavity method [13–15] proposed by Utsuno. In this
study, we used the following model by using the complex effective density r�e and complex volume elasticity
E�e ¼ r�e ðc

�
e Þ

2 for sound fields inside porous materials [16,17]:

re ) r�e ¼ reR þ jreI, (7)

Ee ) E�e ¼ EeR þ jEeI, (8)

where j denotes the imaginary unit; reR and reI denote the real and imaginary parts of r�e , respectively. The
imaginary part reI ¼ �R=o is related with the flow resistance R [27]. EeR and EeI represent the real and
imaginary parts of E�e , respectively. The authors verified that this model is effective for automotive fibrous
materials [16,17]. Kiyota [23] reported that the behaviors of internal air in porous materials can be assumed to
be the factors that govern for such automotive fibrous materials. Therefore, the elastic waves [12,18–20]
through the resin fiber of the porous materials are neglected in this report.

Element mass matrix Mfe can be obtained by substituting Eq. (7) into Eq. (6).

Mfe ¼MRfeð1þ jweÞ, (9)

we ¼ reI=reR. (10)

In these equations, MRfe denotes the real part of the element mass matrix Mfe. reI denotes the imaginary
part of the effective density, and we ¼ reI=reR is associated with the damping effect due to flow resistance.
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By substitution Eq. (8) into Eq. (6), the following element stiffness matrix ½K �fe is obtained:

Kfe ¼ KRfeð1þ jZeÞ, (11)

Ze ¼ EeI=EeR. (12)

In Eq. (11), KRfe represents the real part of the element stiffness matrix Kfe. In Eq. (12), Ze represents the
damping effect due to hysteresis between volume strain and pressure in the porous materials.

It must be noted that both the element stiffness matrix Kfe and the element mass matrix Mfe for internal gas
in the porous materials have complex quantities.

We can use this model for space filled with air if small values for damping parameters we and Ze are
provided.

2.2. Discretized equation for vibration in solid materials with damping

For analyzing vibrations in solid materials such as elastic materials and viscoelastic materials, we used the
following discretized equations from (13) to (19). The equations correspond to the conventional linear finite
element model with regard to hysteresis damping [24].

The stress–strain relationship for solid materials can be expressed as follows:

r ¼ De. (13)

The strain–displacement relationship for solid materials is expressed as follows:

e ¼ Aus, (14)

where r denotes the stress vector; e the strain vector; and us the displacement vector. A represents the matrix
consisting of differential operators. D represents the matrix involving the modulus of elasticity and Poisson’s
ratio.

By using the following matrix NT
s including shape functions, the relationship between displacement us in an

element and nodal displacements use can be approximated as follows:

us ¼ NT
s use. (15)

By using equations from (13) to (15), the kinetic energy ~Ts, strain energy ~Us and external work ~Vs are
evaluated. By applying the minimum energy principle dð ~Us � ~Ts � ~VsÞ ¼ 0, the following equation can be
obtained:

ðKse � o2MseÞuse ¼ fse, (16)

where Kse and Mse denote the element stiffness matrix and the element mass matrix for solid materials,
respectively, and fse represents the nodal force vector in an element e for solid materials.

Solid materials with damping (i.e., viscoelastic materials) can be modeled by using finite elements [4,5,25]
and by replacing the complex modulus of elasticity with Young’s modulus in the matrix D in Eq. (13). As a
result, the element stiffness matrix Kse in Eq. (16) is complex as follows:

Kse ¼ KRseð1þ jZeÞ. (17)

In this equation, Ze denotes the material loss factor corresponding to each element e, and KRse denotes the
real part of the element stiffness matrix for the solid materials.

2.3. Discretized equation in the global system

We superpose all elements of the entire structure containing air, porous materials, and solid materials by
using Eqs. (5)–(17). Then, the following discretized equations in the global system can be obtained:

Xe max

e¼1

ðKReð1þ jZeÞ � o2MReð1þ jweÞÞue ¼ f, (18)
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where f denotes the nodal force vector, and ue denotes the nodal displacement vector in the global system. ue
includes use and ufe. KRe contains KRfe and KRse, and MRe contains MRfe and MRse. emax represents the total
number of elements. The size of these matrix and vectors in Eq. (18) is corresponds to the number of the
degrees of freedoms for the global structures. At interfaces between solid materials and air, and at interfaces
between solid materials and porous materials, the normal components of velocity to the interfaces are
continuous when the Eq. (18) is superposed. On the contrary, the tangential components of velocity along the
interfaces are independent.

In Eq. (18), both the stiffness matrix and mass have complex quantities.
2.4. Fast algorithm to obtain modal damping

Considering resonant conditions, homogeneous equations of Eq. (18) are expressed as follows:

Xe max

e¼1

ðKReð1þ jZeÞ � ðo
ðnÞÞ

2
ð1þ jZðnÞtotÞMReð1þ jweÞÞ/

ðnÞ�
¼ 0. (19)

This corresponds to a complex eigenvalue problem. In this equation, superscript (n) denotes the nth

eigenmode, /ðnÞ
�

represents the complex eigenvector, ZðnÞtot represents the modal loss factor, and ðoðnÞÞ2 denotes
the real part of the complex eigenvalue.

The following parameters bke and bse are introduced:

bse ¼ Ze=Zmax; bsep1; bke ¼ we=Zmax; bkep1, (20)

where Zmax represents the maximum value among the elements’ material loss factors Ze and we,
(e ¼ 1,2,3,y,emax). Under the assumption that Zmax51, solutions of complex eigenvalue Eq. (19) are
expanded by using a small parameter m ¼ jZmax [5]:

/ðnÞ
�

¼ /ðnÞ0 þ m/ðnÞ1 þ m2/ðnÞ2 þ � � � , (21)

ðoðnÞÞ2 ¼ ðoðnÞ0 Þ
2
þ m2ðoðnÞ2 Þ

2
þ m4ðoðnÞ4 Þ

2
þ � � � , (22)

ZðnÞtot ¼ mZðnÞ1 þ m3ZðnÞ3 þ m5ZðnÞ5 þ � � � . (23)

From Eqs. (21)–(23), by considering bkep1, bsep1 and Zmax51 into consideration, Zmaxbke51 and
Zmaxbse51 are obtained. Therefore, we can regard both mbse and mbke as small parameters. In the

abovementioned equations, /ðnÞ0 þ /ðnÞ1 þ /ðnÞ2 ; . . . and ðo
ðnÞ
0 Þ

2; ðoðnÞ2 Þ
2; ðoðnÞ4 Þ

2; . . ., and ZðnÞ1 ; Z
ðnÞ
3 ; Z

ðnÞ
5 ; . . . are real.

We substitute equations from Eqs. (21)–(23) into Eq. (19) , and we can obtain the successive equations that
the asymptotic solutions must satisfy:

m0 order:

Xe max

e¼1

ðKRe � ðo
ðnÞ
0 Þ

2MReÞ/
ðnÞ

0 ¼ 0. (24)

m1 order:

Xe max

e¼1

ðmbseðKRe � mZðnÞ1 ðo
ðnÞ
0 Þ

2MRe � mbkeðo
ðnÞ
0 Þ

2MReÞ/
ðnÞ

0 þ
Xe max

e¼1

ðmKRe � mðoðnÞ0 Þ
2MReÞ/

ðnÞ

0 ¼ 0. (25)

By arranging Eqs. (24)–(25), the following equation can be derived:

ZðnÞtot ¼
Xe max

e¼1

ðZeS
ðnÞ
se Þ �

Xe max

e¼1

ðweS
ðnÞ
ke Þ,

SðnÞse ¼ /ðnÞT0 KRe/
ðnÞ

0

,Xe max

e¼1

/ðnÞT0 KRe/
ðnÞ

0 ,



ARTICLE IN PRESS
T. Yamaguchi et al. / Journal of Sound and Vibration 325 (2009) 436–450 441
S
ðnÞ
ke ¼ /ðnÞT0 MRe/

ðnÞ

0

,Xe max

e¼1

/ðnÞT0 MRe/
ðnÞ

0 . (26)

Eigenmodes /ðnÞ0 in Eq. (26) are real. The eigenmodes /ðnÞ0 are obtained by solving the real eigenvalue equation
(24). According to Eq. (26), the modal loss factor ZðnÞtot can be computed from Ze, we, SðnÞse , and S

ðnÞ
ke . Ze denotes

the damping parameter for each element e concerning elasticity E�e , we denotes the damping parameter for each
element e concerning effective density r�e , SðnÞse represents a share of strain energy of each element to the total
strain energy, and S

ðnÞ
ke represents a share of the kinetic energy of each element to the total kinetic energy.

By using this algorithm, we can decrease the computational time required for calculating the modal
damping and responses for finite element models of the damped structures with large degrees of freedom.

Corresponding to the proposed method described in Sections 2.1–2.4, program codes are developed. In the
latter chapter, we will describe the verification of the proposed method, and then, we will investigate the
damping couplings between solid materials and porous materials.

3. Verification of the proposed numerical method for three-dimensional structures

We developed program codes for three-dimensional structures by following the proposed fast algorithm
described in Sections 2.1–2.4. Hereafter, we will verify the proposed methods and the codes.

3.1. Numerical conditions

We used isoparametric hexagonal elements [24] for porous materials and air. These elements have eight
nodes. The shape function NT

f in Eq. (3) includes N1;N2; . . . ;N8 in

N1 ¼ ð1� xÞð1� ZÞð1� zÞ=8; N2 ¼ ð1þ xÞð1� ZÞð1� zÞ=8; N3 ¼ ð1þ xÞð1þ ZÞð1� zÞ=8,

N4 ¼ ð1� xÞð1þ ZÞð1� zÞ=8; N5 ¼ ð1� xÞð1� ZÞð1þ zÞ=8; N6 ¼ ð1þ xÞð1� ZÞð1þ zÞ=8,

N7 ¼ ð1þ xÞð1þ ZÞð1þ zÞ=8; N8 ¼ ð1� xÞð1þ ZÞð1þ zÞ=8, (27)

where N1;N2; . . . ;N8 have the same form with basis functions that represent the mapping between an element
coordinate xeyeze of metric space and a coordinate of parametric space xZz.

We used isoparametric hexagonal elements [24,26] with non-conforming modes for solid materials with
damping. These elements have also eight nodes. The shape function NT

s in Eq. (3) includes N1;N2; . . . ;N8 in
Eq. (27). The following N9;N10; . . . ;N12 are added as non-conforming modes [26]:

N9 ¼ ð1� x2Þ; N10 ¼ ð1� Z2Þ; N11 ¼ ð1� z2Þ; N12 ¼ ð1� x2Þð1� Z2Þð1� z2Þ. (28)

We used rR ¼ 1:4 kgm�3, we ¼ �0:5 for the complex effective density for the porous material. The complex
volume elasticity was set as ER ¼ 1:19� 105 Nm�2, Ze ¼ 0.1. We used rR ¼ 1:2 kgm�3, we ¼ �0.001,
ER ¼ 1.4� 105Nm�2, and Ze ¼ 0.001 for space filled with air.

3.2. Computational accuracy of the proposed FEM

3.2.1. Verification using an acoustic tube filled with a porous material

We insert a porous material into an acoustic tube model as shown in Fig. 2. Both the ends of the tube are
closed. Backing air is allowed between the porous material and one end of the tube. The thickness of the
porous material is 20mm, and the thickness of the backing air is 35mm. We set the sidewalls of the tube to
be rigid. Thus, normal components of the particle velocities to the walls are set as zero. On the other hand, the
tangential components of the particle velocities along the walls are free. A sound source and observation
points 1 and 2 are shown in the figure. By using the proposed algorithm and the developed codes, we compute
the particle velocity v1 at observation point 1 and the particle velocity v2 at observation point 2. Eq. (18) is
solved by using skyline method to obtain the particle velocities in the tube. Moreover, a transfer function
Hv ¼ v1=v2 is calculated from v1 and v2. Further, the normal incidence sound absorption coefficient using Hv
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Fig. 2. Three-dimensional finite element model for a closed pipe filled with a porous material.
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by using the two microphones method [13]. The results obtained from the calculations are compared with the
theoretical results obtained by using the transfer matrix method [13]. Both the results are shown in Fig. 3.
From Fig. 3, the theoretical results and numerical results obtained by using the proposed FEM are consistent.
This confirms the validity of the finite elements for the porous media described in Section 2.1.

In the original two microphones method [13] proposed by Utsuno et al., the transfer function Hp ¼ p1=p2

between sound pressure p1 at the point 1 and sound pressure p2 at the point 2 was used. In our previous paper
[27], we extended this method by using Hv ¼ v1=v2 and used in this report.

3.2.2. Accuracy for structures containing a viscoelastic material

A viscoelastic material (thickness of 2mm) is laminated on a steel flat plate (thickness of 0.7mm). All the
edges of the laminated plate are clamped. The length of the long edges is 126mm, and the length of the short
edges is 112mm. Modal loss factors of the plate are calculated by using Eq. (26). For the viscoelastic layer,
material loss factor Ze is 0.333, storage modulus of elasticity is 1.00� 109Nm�2, and the mass density is
1.45� 103 kgm�3. The modal loss factors for the plate are depicted in Fig. 4. The modal loss factors ZðnÞtot
obtained by using the finite element method agree well with theoretical results obtained by using the Oberst
equation [25]. This confirms the validity of the finite element model for solid materials with damping described
in Section 2.2.

3.2.3. Accuracy for the damped structures (gas+porous material+solid materials)

As shown in Fig. 5, porous materials, a steel strip, and a viscoelastic strip are inserted in the closed pipe.
The thickness of the steel strip is 1mm and the thickness of the viscoelastic strip is 1mm. The normal velocity
to the boundaries between the strips and the sidewalls of the pipe is set as zero. Both the steel strip and the
viscoelastic strip can move without gap and friction along the sidewalls of the pipe. The cross-section of the
pipe is rectangular. The size of the cross-section of the pipe is so small that the strips behave like mass without
elastic deformation within a low frequency range. By using the proposed FEM, sound absorption coefficients
under normal incidence are computed. Fig. 6 represents the calculated results. In the figure, theoretical values
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Fig. 7. Three-dimensional finite element model for double walls with a porous material.
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of absorption coefficient are calculated by using the transfer matrix method [13]. For the transfer matrix
method, the strips are modeled according their mass due to their mechanical impedances. In this figure,
theoretical results and the results obtained from the proposed finite element method coincide well. This
confirms the validity of Eq. (18) for the damped structures with porous materials described in Section 2.3.

3.3. Damped responses and modal loss factors for automotive double walls with a porous material

We investigate modal couplings in damping and rigidity between solid layers (elastic layers and a
viscoelastic layer) and a porous layer by using FEM models of double walls with a porous material. Fig. 7
shows a numerical model used for the investigation. A viscoelastic damping material is laminated on a steel
rectangular flat plate (126mm� 112mm). The thickness of the damping material is 2mm, and the thickness of
the steel plate is 0.7mm. Hereafter, we call this laminated panel a damped plate. This damped plate has the
same shape and same clamped edges as described in Section 3.2.2. Furthermore, a porous material and
another steel sheet are laminated on the damped panel. We call the added steel sheet a cover plate. The
thickness of the porous material is 15mm, and the thickness of the cover plate is 0.6mm. The porous layer is
sandwiched between the damped panel and the cover plate. This corresponds to double walls with sound
absorbing materials. The boundary conditions of the damped panel and the cover plate are set according to
the automotive use. All edges of the steel layer are clamped. On the other hand, all edges of the cover plate are
set as free boundaries. The sidewalls of the porous layer are regarded as rigid walls. At the rigid walls, normal
components of the particle velocities in the porous layer to the walls are set as zero. The tangential
components of the velocities are free at the rigid walls. At the interface between the damped plate and the
porous layer, normal components of the particle velocities in the porous layer to the interface are continuous
up to the normal components of the velocity of the damped plate. Similarly, the normal components of the
particle velocity are continuous up to the normal components of the velocity of the cover plate. At these
interfaces, the tangential components of the velocities to the interfaces exist independently, both in the porous
layer, damped panel, and cover plate.

The storage modulus of elasticity, material loss factor, and mass density of the viscoelastic layer are
1.00� 109Nm�2, 0.333, and 1.45� 103 kgm�3, respectively. For the porous layer, we used reR ¼ 1.4 kgm�3,
we ¼ reI=reR ¼ �0:5 as the complex effective density and used EeR ¼ 1.19� 105Nm�2, Ze ¼ EeI=EeR ¼ 0:1 as
the complex bulk modulus. The material loss factor of the steel layer is set as 0.001.

The steel plain plate is excited at the point as shown in Fig. 7. The coordinate of the excitation point is
(x, y, z) ¼ (21.8, 0, 21.0). The waveform corresponding to the excitation is that of white noise. We evaluated
the averaged acceleration aav over the entire surface of the cover plate to determine the vibration isolation
performance.

The averaged acceleration level (case 1) for the double walls with the sound absorbing material is shown in
Fig. 8. In this figure, the averaged acceleration level (case 2) is shown. The cover plate for case 2 has a higher
material damping Ze ¼ 0.1 than material damping Ze ¼ 0.001 for case 1. Further, there exists the averaged
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acceleration level (case 3) over the surface of the damped panel without the porous layer and the cover plate.
By comparing case 3 with case 1 in Fig. 8, the averaged vibration level for case 1 is larger than that for case 3 in
the 200-Hz frequency band. In this frequency region, the vibration level increases due to the lamination of the
porous layer and cover plate. This frequency corresponds to the resonance at the low frequency resonance for
double walls. On the contrary, in the higher frequency region, the vibration level for case 3 is smaller than that
for case 1 due to vibration isolation. If the material loss factor of the cover plate increases from Ze ¼ 0.001
(case 1) to Ze ¼ 0.1 (case 2), the vibration isolation effect increases. However, small effects occur in the 200-Hz
band. We will investigate this phenomenon in detail. Fig. 9 shows the eigenvectors of the double walls with the
porous layer for case 1. There exist three modes (mode A, mode B, mode C) in the vicinity of the resonance in
the 200-Hz band. For the mode A including translation toward the y-direction, the resonance frequency is
202Hz and the modal loss factor ZðnÞtot is 0.10. For the mode B including rotation about the x-axis, the resonant
frequency is 212Hz and the modal loss factor ZðnÞtot is 0.10. The resonant frequency is 213Hz and the modal loss
factor ZðnÞtot is 0.10 for the mode C including rotation about the z-axis. In these three modes, the motions of the
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cover plate can be regarded to be rigid because no elastic deformations occur in the eigenmodes. Elastic
deformations for these modes mainly appear in the porous layer. On the other hand, there exist slight elastic
deformations in the damped panel. From these results, the cover plate corresponds to the mass, and the
porous layer corresponds to the spring in these modes. As described before, the modal loss factors ZðnÞtot for all
three modes is 0.1. This value corresponds to the material loss factor Ze ¼ 0.10 of the porous layer due to
hysteresis between the pressure and the volume strain. Therefore, we can state that the damping effects due to
complex bulk modulus appear because of the complex spring for the porous layer. Modes A, B, and C become
rigid modes if the cover plate does not have the porous layer and the damped panel under such conditions. The
corresponding resonant frequencies and modal loss factors become zero. Thus, the resonant frequencies
increase and vibration damping increases when the cover plate floats on the porous layer. This is due to the
coupling effects in rigidity and damping between the layers.

Modes D, E, and F in Fig. 10 are the typical examples of eigenmodes including large elastic deformations of
the cover plate. In mode D, the resonant frequency is 260Hz, and the modal loss factor ZðnÞtot is 0.071. In mode
E, the resonant frequency is 1120Hz, and the modal loss factor ZðnÞtot is 0.071. In mode F, the resonant
frequency is 2030Hz, and the modal loss factor ZðnÞtot is 0.0037. The modal loss factors ZðnÞtot of modes D, E, and F
have values lying between the material loss factor Ze ¼ 0.001 of the cover plate and the material loss factor
Ze ¼ 0.1 of the porous layer due to the complex bulk modulus. By considering eigenmodes (mode D0, mode E0,
and mode F0 in Fig. 11 for the cover plates corresponding to eigenmodes (modes D, E, and F) in Fig. 10 under
free edges without the porous layer and without the damped panel, the related resonant frequencies (143Hz
for mode D0, 1090Hz for mode E0, 2010Hz for mode F0, respectively) become lower, and the related modal
loss factors ZðnÞtot (0.001 for mode D0, 0.001 for mode E0, 0.001 for mode F0, respectively) become smaller than
those of eigenmodes (modes D, E and F) for the double walls with the porous layer.

Modes G, H, and I as shown in Fig. 12 are the typical examples of eigenmodes having large elastic
deformations in the damped panel. In mode G, the resonant frequency is 519Hz, and the modal loss factor ZðnÞtot
is 0.14. In mode H, the resonant frequency is 1074Hz, and the modal loss factor ZðnÞtot is 0.14. In mode I, the
resonant frequency is 1950Hz, and the modal loss factor ZðnÞtot is 0.14. These modal loss factors ZðnÞtot have the
same values as the theoretical value 0.14 obtained by using the Oberst’s equation [25]. For the damped panel
without the porous layer and without the cover plate, the resonant frequencies corresponding to mode G00,
mode H00, and mode I00 (as shown in Fig. 13), are 488Hz (modal loss factor ZðnÞtot ¼ 0:14), 1060Hz (modal loss
Fig. 10. Eigenmodes of the double walls with the porous material.

Fig. 11. Eigenmodes of the cover plate without the porous material and without the damped panel.
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Fig. 12. Eigenmodes of the double walls with the porous material.

Fig. 13. Eigenmodes of the damped panel without the porous material and without the cover plate.
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factor ZðnÞtot ¼ 0:14) and 1940Hz (modal loss factor ZðnÞtot ¼ 0:14), respectively. Modes G00, H00, and I00 contain
similar deformations in the damped panel to the deformations in modes G, H, and I as shown in Fig. 12.
In these cases, there exist slight variations between modes G and G00, between modes H and H00, and between
I and I00 on the resonant frequencies and the modal loss factors ZðnÞtot due to the lamination of the porous layer
and the cover plate. Therefore, the influence of the porous layer on the modes including large deformations in
the cover plate is significantly as compared to that on modes including large deformations in the damped
panel. These phenomena are caused by the difference in rigidity due to boundary conditions. The cover plate
with free edges has low rigidity that the rigidity and damping of the porous layer are affected easily.
On the other hand, the damped panel with the fixed edges has high rigidity that the rigidity and damping of the
porous layer cannot be affected easily.

For modes G, H, and I as illustrated in Fig. 12, there is small transmission of elastic deformations from the
damped panel to the cover plate. The cover plate moves different motions from the motions of the damped
plate for these modes. From the response in Fig. 8, the response of case 3 (i.e., the case of the damped panel
alone) shows large amplitudes near the resonant frequencies corresponding to modes G, H, and I, whereas the
response of case 1 (i.e., the case of the double walls with the porous layer) decreases near these resonances due
to the isolation effect of the porous material.

Mode J in Fig. 14 is the first spatial mode along the z-direction in air inside the porous layer. This mode in
Fig. 14 corresponds to distribution of the particle displacements of internal air in the porous layer. In this
figure, the white regions represent large particle displacement, and the dark regions represent small particle
displacement. Nodes of the mode appear at both edges along the z-direction, and an anti-node appears at the
midpoint along the z-direction. The resonant frequency of mode J is identical to the resonant frequency
1300Hz of the porous layer without the damped layer and without the cover plate under a closed space.
Moreover, the modal loss factor ZðnÞtot for this mode is 0.6. This value is identical to the sum of the material loss
factor Ze ¼ 0.1 due to the complex bulk modulus and the material loss factor we due to the complex effective
density for the porous layer. These phenomena reveal that y-components vfy of the particle velocity in the
porous layer in this mode are so small that vfy does not have a coupling effect with y-components of vibration
velocity of the damped panel and the cover plate. Therefore, this mode cannot affect the vibration isolation.
Similarly, mode K in Fig. 14 is the first spatial mode along the x-direction in air inside the porous layer. This
mode does not influence the vibration isolation, too.
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Fig. 14. Eigenmodes of the double walls with the porous material.
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By increasing the material loss factor of the cover plate to Ze ¼ 0.1 for case 2 from Ze ¼ 0.001 for case 1, the
modal loss factors ZðnÞtot increase for the modes (D, E, and F), including large deformations of the cover plate.
For mode D, the modal loss factor ZðnÞtot increases from 0.071 for case 1 to 0.10 for case 2. For mode E, the
modal loss factor ZðnÞtot increases from 0.0071 for case 1 to 0.10 for case 2. For mode F, the modal loss factor ZðnÞtot
increases from 0.0037 for case 1 to 0.10 for case 2.

For the modes A, B, and C, including rigid motions of the cover plate in the 200Hz band, the related modal
loss factors ZðnÞtot cannot increase significantly due to the increment in the material loss factor of the cover plate
from Ze ¼ 0.001 to 0.1 because there are no elastic deformations of the cover plate in modes A, B, and C.
These phenomena indicate that there exists no difference between the peaks of the response in the 200Hz band
in Fig. 8 between for cases 1 and 2 with larger material damping of the cover plate. In the same manner, by
increasing the material loss factor in the cover plate from Ze ¼ 0.001 to 0.1, modal loss factors ZðnÞtot cannot
increase for modes G, H, and I with large deformations in the damped panel and for the spatial mode J in the
porous layer.

3.4. Investigating the validity of the modal parameters by using the proposed method (MSKE method: modal

strain and kinetic energy method)

We investigate the validity of the proposed method by using the MSKE method (i.e., modal strain and
kinetic energy method). Fig. 15 represents the transfer functions (i.e., |acceleration/force| ¼ |A/F|) of the
damped structure as we have stated in Section 3.3. The shape, boundary conditions, and materials for the
damped structure are identical with the model, as shown in Fig. 7, except for the damping parameters (Ze,we) of
the porous material. For the porous material, the damping parameter we related to acoustic resistance is varied
under a constant value Ze ¼ 0.1 in the graphs on the left side of Fig. 15. On the contrary, the damping
parameter Ze related to volume elasticity is varied under constant �we ¼ 0.1 in the graphs on the right side of
Fig. 15. The observation point on the cover plate is (x, y, z) ¼ (21.8, 18.3, 21.0). The excitation point is at the
same place as that shown in Fig. 7. In the figure, the solid lines represent the frequency responses using the
modal parameters from the proposed method (i.e., MSKE method) explained in Section 2.4. These responses
are denoted by ‘‘FEM+MSKE’’. In addition, circles, which are denoted by ‘‘Direct FEM’’, are responses
calculated directly by using Eq. (18). Both the responses are qualitatively consistent. Moreover, both the
responses can be considered to be quantitatively consistent under Zep0:5 and �wep0:5 in practice. This
reveals the validity of the approximated modal damping in Section 2.4.

It took about 8min to calculate the responses for one frequency by solving Eq. (18) in Fig. 15. Therefore, it
required 8� 9001min to obtain the responses ranging from 100 to 1000Hz with increment in frequency
0.1Hz. On the other hand, it is necessary about 30min to compute the responses by using MSKE method.
Thus, the computations performed by using the proposed MSKE method were about 1500 times faster than
those performed by solving Eq. (18) to obtain these responses.

4. Conclusion

We have described a method for vibration analysis of automotive double walls with a porous material. By
applying an asymptotic method to a complex eigenvalue problem to obtain modal parameters, expressions for
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Fig. 15. Frequency responses calculated by modal strain and kinetic energy method: FEM+MSKE, —; direct FEM, J: (a-1) Ze ¼ 0.1,

we ¼ �0.01; (a-2) Ze ¼ 0.1, we ¼ �0.1; (a-3) Ze ¼ 0.1, we ¼ �0.5; (a-4) Ze ¼ 0.1, we ¼ �1.0; (a-5) Ze ¼ 0.1, we ¼ �2.0; (b-1) Ze ¼ 0.01,

we ¼ �0.1; (b-2) Ze ¼ 0.1, we ¼ �0.1; (b-3) Ze ¼ 0.5, we ¼ �0.1; (b-4) Ze ¼ 1.0, we ¼ �0.1; and (b-5) Ze ¼ 2.0, we ¼ �0.1.

T. Yamaguchi et al. / Journal of Sound and Vibration 325 (2009) 436–450 449
the modal loss factor are derived for three-dimensional damped structures. We developed the code by
following the proposed approach. Further, we showed that computations performed by using the proposed
MSKE method are 1500 times faster than those performed by solving discrete equations directly for responses
ranging from 100 to 1000Hz with increment in frequency of 0.1Hz for a typical three-dimensional model of a
damped structure.
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The validity of responses to the MSKE method for three-dimensional damped structures was confirmed
quantitatively under Zep0:5 and �wep0:5 in practice.

There exist damping couplings between structures containing solid materials and porous materials for
double walls filled with a porous material.
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